Superhydrophobic Surface Based on a Coral-Like Hierarchical Structure of ZnO

نویسندگان

  • Jun Wu
  • Jun Xia
  • Wei Lei
  • Baoping Wang
چکیده

BACKGROUND Fabrication of superhydrophobic surfaces has attracted much interest in the past decade. The fabrication methods that have been studied are chemical vapour deposition, the sol-gel method, etching technique, electrochemical deposition, the layer-by-layer deposition, and so on. Simple and inexpensive methods for manufacturing environmentally stable superhydrophobic surfaces have also been proposed lately. However, work referring to the influence of special structures on the wettability, such as hierarchical ZnO nanostructures, is rare. METHODOLOGY This study presents a simple and reproducible method to fabricate a superhydrophobic surface with micro-scale roughness based on zinc oxide (ZnO) hierarchical structure, which is grown by the hydrothermal method with an alkaline aqueous solution. Coral-like structures of ZnO were fabricated on a glass substrate with a micro-scale roughness, while the antennas of the coral formed the nano-scale roughness. The fresh ZnO films exhibited excellent superhydrophilicity (the apparent contact angle for water droplet was about 0°), while the ability to be wet could be changed to superhydrophobicity after spin-coating Teflon (the apparent contact angle greater than 168°). The procedure reported here can be applied to substrates consisting of other materials and having various shapes. RESULTS The new process is convenient and environmentally friendly compared to conventional methods. Furthermore, the hierarchical structure generates the extraordinary solid/gas/liquid three-phase contact interface, which is the essential characteristic for a superhydrophobic surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Facile Synthesis of Three-Dimensional ZnO Nanostructure: Realization of a Multifunctional Stable Superhydrophobic Surface

BACKGROUND After comprehensive study of various superhydrophobic phenomena in nature, it is no longer a puzzle for researchers to realize such fetching surfaces. However, the different types of artificial surfaces may get wetted and lose its water repellence if there exist defects or the liquid is under pressure. With respect to the industry applications, in which the resistance of wetting tran...

متن کامل

بررسی اثر پلی‌اتیلن گلایکول بر رفتار ترشوندگی سطوح آبگریز ZnO تهیه شده به‌روش رسوب‌دهی حمام شیمیایی

A superhydrophobic ZnO surface was prepared on the stainless steel mesh by a one-step chemical bath deposition method without chemical post-treatment. The effect of adding polyethylene glycol 6000 (PEG 6000) as an organic additive and the type of the alkaline agent were investigated on the morphological and wettability properties of ZnO surfaces. The prepared surfaces were characterized by X-ra...

متن کامل

Fabrication of Novel Superhydrophobic Surfaces and Water Droplet Bouncing Behavior — Part 1: Stable ZnO–PDMS Superhydrophobic Surface with Low Hysteresis Constructed Using ZnO Nanoparticles

A superhydrophobic surface has many advantages in micro/nanomechanical applications, such as low adhesion, low friction and high restitution coefficient, etc. In this paper, we introduce a novel and simple route to fabricate superhydrophobic surfaces using ZnO nanocrystals. First, tetrapod-like ZnO nanocrystals were prepared via a one-step, direct chemical vapor deposition (CVD) approach. The n...

متن کامل

Hierarchical polymer micropillar arrays decorated with ZnO nanowires.

We introduce a simple and robust method for fabricating hierarchical fibrillar arrays based on polymer micropillar (microPLR) arrays decorated with ZnO nanowires (NWs) on mechanically flexible substrates. The hierarchical fibrillar arrays are fabricated by replica molding of polymer microPLR arrays on microfabricated silicon templates and subsequent solution-based growth of ZnO NWs. Fine contro...

متن کامل

Electrosynthesis and optical modeling of ZnO nanostructures

Optical modeling was applied for obtaining absorbance spectra and band gap values for different morphology of ZnO semiconductor. In optical modeling, the relative permittivity scalars of zinc oxide coral like nanorods were calculated using the Bruggeman homogenization formalism. ZnO nano rods (ZONRs) as a nucleus layer were fabricated on the Indium Tin Oxide (ITO) by chronoamperometry (CA) in a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010